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Starting from the governing equations for a quantum magnetoplasma including the quantum Bohm potential
and electron spin-1 /2 effects, we show that the system of quantum magnetohydrodynamic �QMHD� equations
admits rarefactive solitons due to the balance between nonlinearities and quantum diffraction and tunneling
effects. It is found that the electron spin-1 /2 effect introduces a pressurelike term with negative sign in the
QMHD equations, which modifies the shape of the solitary magnetosonic waves and makes them wider and
shallower. Numerical simulations of the time-dependent system shows the development of rarefactive QMHD
solitary waves that are modified by the spin effects.
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I. INTRODUCTION

There is currently a great deal of interest in collective
quantum effects in plasmas �1–12�; many of these studies are
motivated by recent experimental progress and techniques
�13–16� and also by possible astrophysical applications
�12,17–20�. In particular, magnetohydrodynamic �MHD�
plasmas are of interest in such astrophysical applications.
However, in strong magnetic fields, single-electron effects
that depend on the electron spin properties, such as Landau
quantization, will be important. It is thus not surprising that
collective spin effects can influence the wave propagation in
a strongly magnetized quantum plasma �12,21–23�. More-
over, the recent progress in producing ultracold plasmas in
terms of Rydberg states �24,25� may offer an interesting ex-
perimental environment for quantum plasma dynamics. In
such cold plasmas, the thermal energy of the particles can be
very small compared to the Zeeman energy of the particles in
magnetic fields. Thus, collective spin properties of quantum
plasmas may be possible to detect in the near future.

In this Brief Report, we will show that the balance be-
tween the nonlinear plasma and quantum effects gives rise to
magnetosonic solitons. Using the governing equations for
quantum MHD �QMHD� plasmas with tunneling and spin
effects included, we derive a Sagdeev potential for the one-
dimensional system. We show that, in a magnetized quantum
plasma, the electron spin-1 /2 effect can strongly modify the
amplitude and width of rarefactive solitons.

II. GOVERNING EQUATIONS

We begin by presenting the general governing equations
for a quantum magnetoplasma in which the electron
spin-1/2 effects are included. We define the total mass
density ���mene+mini�, the center-of-mass fluid flow
velocity V��meneve+minivi� /�, and the current density
j=−eneve+enivi. Here me �mi� is the electron �ion� mass, ne

�ni� is the electron �ion� number density, ve �vi� is the elec-
tron �ion� fluid velocity, and e is the magnitude of the elec-
tron charge. From the general set of spin-fluid equations
�12�, the corresponding QMHD equations can be derived
�23�. From these, we immediately obtain the continuity equa-
tion

��

�t
+ � · ��V� = 0. �1�

Assuming quasineutrality, i.e., ne�ni, the momentum con-
servation equation reads

�� �

�t
+ V · ��V = j � B − �P + FQ, �2�

where P is the scalar pressure in the center-of-mass
frame, the current is given by j=�0

−1�� �B−�0M�,
M= ��B� /mi�tanh��BB /kBTe�B̂ is the plasma magnetization
due to the electron spin, and �12,23�

FQ =
�2�

2memi
�� 1

	�
�2	�� +

�B�

mi
tanh��BB

kBTe
��B �3�

is the quantum force due to collective tunneling and spin
alignment. Here �B=e� /2me is the magnitude of the Bohr
magneton, � is the Planck constant divided by 2�, and c is
the speed of light in vacuum. The generalized Faraday law
takes the form

�B

�t
= � � 
V � B −

�� � �B − �0M�� � B

ene�0
− �j

−
me

e2�0
� �

�t
− �� � B

e�0ne
� · ��� � B

ne
−

FQ

ene

 , �4�

where � is the plasma resistivity.

III. SPIN SOLITONS

Next, we assume that the magnetic field is along the z
direction such that B=B�x , t�ẑ, while we have the velocity
V=V�x , t�x̂ and the density ��x , t�. With this, the governing
equations reduce to

��

�t
+

�

�x
��V� = 0, �5�
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�V
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�V

�x
= −

B

�0�

�B

�x
− Cs

2 �

�x
ln �

+ 2c2�C
2 me

mi

�

�x
� 1

	�

�2	�

�x2 �
+

�B

mi�

�

�x
��B tanh��BB

kBTe
�� , �6�

and

�B

�t
+

�

�x
�BV� − �

�2B

�x2 = 0. �7�

Here �C=c /�C=� /2mec is the Compton wavelength, �C is
the Compton frequency, Cs= �kB�Te+Ti� /mi�1/2 is the sound
speed, �=� /�0 is the magnetic diffusivity, the last term in
Eq. �6� is the spin force divided by mi, and we have ne-
glected the inertial term in the Faraday law �7�.

If the resistivity is weak, we may neglect the last term in
the Faraday law �7�, and obtain the frozen-in-field condition
�=�0b, where b=B /B0, with the background values denoted
by the zero index. Then, Eqs. �6� and �7� form a closed
system, taking the form

�V

�t
+

�

�x
�V2

2
� = − CA

2 �b

�x
− Cs

2 �

�x
ln b

+ 2c2�C
2 me

mi

�

�x
� 1

	b

�2	b

�x2 �
+

kBTe

mi

�

�x
�ln�cosh�	b�� + 	b tanh�	b��

�8�

and

�b

�t
+

�

�x
�bV� = 0, �9�

where we have introduced the Alfvén speed
CA= �B0

2 /�0�0�1/2 and the temperature-normalized Zeeman
energy 	=�BB0 /kBTe.

We now normalize our variables as t̄=�cit, x̄= ��ci /CA�x
= ��pi /c�x �where �pi= �n0ie

2 /
0mi�1/2 is the ion plasma fre-
quency�, v=V /CA, and cs=Cs /CA. We then obtain

�v
�t

+
�

�x
�v2

2
� = −

�b

�x
− cs

2 �

�x
ln b + 2

�pe
2

��ce��C

�

�x
� 1

	b

�2	b

�x2 �
+ vB

2 �

�x
�ln�cosh�	b�� + 	b tanh�	b�� , �10�

with vB
2 =kBTe /miCA

2 = �1 /	���BB0 /miCA
2� and

�b

�t
+

�

�x
�bv� = 0, �11�

where for simplicity we drop the overbars on the normalized
coordinates.

Next, we assume that v and b are functions of �=x−v0t,
where v0 is a constant speed �normalized by CA�. Then Eq.

�11� can be integrated as v=v0�1−1 /b�, where we used the
boundary conditions b=1 and v=0 at �� � =�, and Eq. �10�
can be integrated twice to obtain

�dZ

d�
�2

+ 
�Z� = 0, �12�

where Z=	b, and the Sagdeev potential �26� for our pur-
poses reads


 =
��ce��C

�pe
2 
v0

2

4
�Z −

1

Z
�2

−
1

4
�Z2 − 1�2

−
cs

2

2
�Z2 ln�Z2� − Z2 + 1�

+
vB

2

4
�Z2 ln� cosh�	Z2�

cosh�	� � − 	 tanh�	��Z2 − 1��
 .

�13�

In deriving �13� we have used the condition 
�1�=0. In
Figs. 1 and 2, we have plotted the Sagdeev potential as well
as the profiles of the corresponding solitary waves for differ-
ent sets of parameters. The solitary waves have only sub-
Alfvénic speeds and are characterized by a localized deple-
tion of the magnetic field and density. In Fig. 1, we see that
the solitary waves increase their amplitudes for smaller
speeds. In the limit of zero speed, we have rarefactive soli-
tons with a zero density at its center. The influence of the
electron spin-1 /2 effect on the solitary waves is displayed in
Fig. 2, where we see that larger values of 	 lead to wider
solitary waves with shallower density and magnetic field
depletions. In order to study the influence of the spin pres-
sure on the nonlinear dynamics of our system, we have
solved the time-dependent system of equations �10� and �11�
for different values of the spin pressure parameter 	. As
an initial condition at t=0, we took a magnetic field
with a local depletion in the form Gaussian pulse
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FIG. 1. Sagdeev potential 
�Z� �upper panel� and the profile of
the solitary wave Z��� �lower panel�, for v0=0.01 �dashed lines�,
0.5 �solid lines�, and 0.7 �dotted lines�. The other parameters are
	=5, cs=0.1, vB=0.2, and ��ce ��C /�pe

2 =1.
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b=1−0.5 exp�−x2 /100�, while the velocity v was set to zero.
For 	=5, we see in the left-hand column of panels in Fig. 3
that the initial pulse develops into two counterpropagating
pairs of rarefactive solitary waves, where the smaller pulse in
the pair propagates with a somewhat larger speed, �0.75CA,
than the larger one, which propagates with a speed of
�0.65CA. For a larger value 	=10, displayed in the right-
hand panels of Fig. 3, the pulse develops into two counter-
propagating pulses that propagate with somewhat lower
speed, �0.4CA, and they are wider and of smaller amplitude
than the large-amplitude pulses for 	=5. All pulses are rar-
efactive and are propagating with sub-Alfvénic speed, in
agreement with our analysis in Figs. 1 and 2.

IV. SUMMARY AND DISCUSSION

In the numerical examples of the previous section, the
normalized Zeeman energy 	 played a crucial role. In par-
ticular, the spin contribution to the soliton dynamics is en-
hanced when the Zeeman energy is of the order of or greater
than 1 �we note, however, that other parameters play a role in
forming the necessary shape of the Sagdeev potential�. Thus,
it is natural to investigate what type of parameter values
correspond to 	�1. For astrophysical plasmas, such as in
pulsar magnetospheres, we can have B0�1010 T �20�, imply-
ing that 	�1 for Te�109 K, i.e., not a very severe con-
straint. However, in such environments, the plasma often has
relativistic temperatures and flows, and a relativistic formal-

ism should be used. In the case of Rydberg plasmas �24,25�,
where the temperature can go as low as millikelvins, we see
that the Zeeman energy is greater than 1 for external mag-
netic field B0�10−3 T. Thus, in such ultracold laboratory
systems, a very weak external magnetic field would make
spin effects important for the formation of solitons, and the
theory presented here could therefore be checked experimen-
tally.

In conclusion, we have investigated the effects of the
quantum Bohm potential and the electron spin 1 /2 on the
existence of magnetosonic solitary waves in a magnetized
quantum plasma. The solitary waves exist due to a balance
between the nonlinearities and the dispersion induced by the
electron quantum diffraction and tunneling effects associated
with the quantum Bohm potential. The spin introduces an
additional negative pressurelike term in the quantum mo-
mentum equation, with the effect that solitary waves become
wider and have shallower density depletions for larger values
of the Zeeman energy 	=�BB /kBTe. We note that the spin
term in the Sagdeev potential �13� can dominate the dynam-
ics in the regime of Cs

2 ,CA
2 �CA

2vB
2	. This regime corre-

sponds to a dense quantum plasma with an ambient magnetic
field, such that �ce�C��pe and kB�Te+Ti���BB0. Thus, the
spin of the electrons collectively modifies the quantum dy-
namics of the MHD plasma significantly.
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FIG. 2. Sagdeev potential 
�Z� �upper panel� and the profile of
the solitary wave Z��� �lower panel�, for 	=1 �dashed lines�, 5
�solid lines�, and 10 �dotted lines�. The other parameters are
v0=0.5, cs=0.1, vB=0.2, and ��ce ��C /�pe

2 =1.
FIG. 3. Time-dependent dynamics of the normalized magnetic

field b, for 	=5 �left column� and 10 �right column�. The other
parameters are cs=0.1, vB=0.2, and ��ce ��C /�pe

2 =1.
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